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• Number of levels per MeV of excitation
— Formally

— State density (includes 2J+1 degeneracy)

• Phase-space determines the rate of reactions and decays
— Compound reactions: (n,g), (n,n’), (n,2n) …, Nucleosynthesis

Level Densities

ρ δ ψ δ ψ

π η
η

E tr E H E H

tr
E H i

i i

i

( ) = −( )[ ] = −( )

= −
− +











∑

→

ˆ ˆ

Im ˆ
1 1

0

E J

E
J

E
J

90Y
89Y

88Y

87Y
J

E



• Hauser-Feshbach
— Channel c to c’

• Physics inputs
— Discrete states
— Level density
—  γγγγ-ray decay path; low-lying discrete spectroscopy, isomers

– Transition from continuous to discrete spectrum

— Transmission coefficients - optical model - far from stability
— Pre-equilibrium cross section - angular momentum deposition
— Fission

Reaction cross sections
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A fast and accurate model for ρρρρ(E) is needed
Especially for nuclei far from stability



• Usual approach:
— Gilbert and Cameron

– Small set of discrete states up to Ecut

– Finite temperature below Ematch

– Fermi gas above Ematch

— Fix parameters with some known data
– Difficult to extrapolate to nuclei with no data – uncontrolled far from stability

• Microscopic treatment of Hres

— Count single-particle states in the deformed mean-field
– Need ad hoc collective enhancement factors

— Shell Model
– Direct diagonalization

– Too many states!
– Monte Carlo Shell Model

– Sign problem
– Schematic interactions: SDI or pairing plus quadrupole

– Statistical methods
– Moments of Hres with some assumptions on the form of the level density

Level Densities



• Goal is to accurately describe low-lying structure
— Eigenvalues of Hamiltonian matrix Hij=〈〈〈〈ψψψψi|H|ψψψψj〉〉〉〉

• Lanczos

Level Densities: the nuclear shell model
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• Ensemble averages
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• Start with thermodynamics

Monte Carlo Shell Model
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• Can’t handle the two-body part:

• Use Gaussian integral:

• Then

• Solve using Monte Carlo sampling
— Accurately evaluates ρρρρ(E)

— Problems:
– Sign is bad for arbitrary interactions
– Slow

Monte Carlo Shell Model
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• W.E. Ormand, PRC56, R1682
(1997) – 24Mg

Application of the Monte Carlo Shell Model

• H. Nakada and Y. Alhassid,
PRL79, 2939 (1997)



• Shell Model
— Construct basis states ψψψψi

— Diagonalize Hamiltonian matrix Hij=〈〈〈〈ψψψψi |H| ψψψψj〉〉〉〉

• Partition the problem in a convenient manner
— particles in orbits, e.g., 0d5/2(4), 1s1/2(2), 0d3/2(2).

• Assume GOE for each partition
• Evaluate partial level densities ρρρραααα(E), ρρρρ(E)=ΣΣΣΣαααα    ρρρραααα(E)

Statistical Method #1: Pluhar & Weidenmüller - 1
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Statistical Method #1: Pluhar & Weidenmüller - 2
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• 24Mg  and 54Fe state densities

Statistical Method #1: Pluhar & Weidenmüller - 3



• J. Nabi, C.W. Johnson [LSU] and W.E. Ormand [LLNL]
• Level densities with two-body interactions are nearly Gaussian

— Higher moments are somewhat different
— Expand with Hermite polynomials

– Not positive definite

• Try a binomial form – suggested by A. Zuker

• Fix µµµµi with moments of the Hamiltonian

Statistical Method with a binomial
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• Improvement over Gaussian
— Includes µµµµ3

— Can correct Gaussian with orthogonal polynomials, i.e., Hermite
– Not guaranteed to be positive definite

• But fourth moment is determined by dimension N
— Treat N as a parameter to fix µµµµ4 and scale ρρρρ to get correct dimension –

Fourth Moment Scaled (FMS)
— Sometimes it works really well
— Others it doesn’t

Binomial



• Partition protons and neutrons in model space (144 for 24Mg)

• Compute moments of Hamiltonian:

— Full influence on other partitions is accounted for, e.g.

• Assume partial level densities taken to have a binomial form and
fix the moments

Improving the Binomial
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Application of a realistic model to compute ρρρρ(E)



Application of a realistic model to compute ρρρρ(E)



Application of a realistic model to compute ρρρρ(E)



• The Good
— Relatively fast

– Fourth moment can be expensive because of the number of partitions
– For 54Fe about 24 hours (not yet optimized)
– But for MCSM over 700 hours
– Perhaps symmetric binomial may be good enough?

— Can use ANY interaction
— Parity distribution is trivial

• The Bad
— Limited by number of partitions
— Need two-body matrix elements for a “realistic” and meaningful

Hamiltonian in the model space
— Can’t determine ground state energy with great accuracy ~ 500 keV

– Use MCSM?

• The unknown
— J projection and spin cut off parameter

The Good and the Bad


